
00(0

0o STARS
NREUSABILITY GUIDELINES
I

April 30, 1990

Contract No. F19628-88-D-0032

Task IR40: Repository Integration

Delivered as part of:
CDRL Sequence No. 1550 D T CELECTE 0

Prepared for: NO O 9 1990

Electronic Systems Division
Air Force Systems Command, USAF

Hanscomb AFB, MA 01731-5000

Prepared by:

IBM Systems Integration Division
800 North Frederick

. - -Gaithersburg, MD 20879

.-Aproved for~t publ s

REPOT DCUM NTAION AGEForm Approved

REPORT~~~ DOU ETTINPG MB No. 0704-0188
Puoii reporting ourcen for this coilection of inform~ation is estimated to aierage I hour Oer re se. iciLirig thle time for feviewinq instructions. searcning existing data sources,
gathering and maintaining tfhe ata needed, and con'oietrg andt re viin thle collection of information. Sen'd comments re~aon thtbrenitmteo n other aspect Of this
collection of information. ricing suggestions for reauciiio this ourcen Ito wasnington ifeaooawcts Services. Directorate .of Information Operations dnd Reports. 1215 Jefte~son
Davis HigF~as. Suite 120'. Arlington. VA 22201-4302. and to the Office of Manacement ano Buaget. Papeworic Reduction Project (0704.OlB8).WSshington. CC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3REPORT TYPE AND DATES COVERED

- I ~~~AprtrlOT4,-99~ -'Final- ____________

4. TITLE AND SUBTITLE S.~ FUNDING NUMBERS

~ C~~ii3 7!W~ .~ ~C: F19628.-88-D-0032

6. AUTHOR(S)

IR. Ekman

7. PERFORMING ORGANIZAs ION NAME(S) AND AD8. PERFORMING ORGANIZATION
REPORT NUMBER

IBM Federal Sector Division/
800 N1. Frederick Avenue
Gaithersburg, MD 20879

9. SPONSORING /'MONITORING.AGEN9YAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING
AGENCY REPORT NUMBER

Electronic Systems Division ~'
Air Force Systems Command, USAF
Hanscom AFB, MA 01731-5000 CDRL Sequence No. 1550

11. SUPPLEMENTARY NOTES

12a.DISTIBUTON /VAILBILIY STTEMET L IRBUON-CODE

<1. ABSTRACT (Maximum 200 words)

A guide to software reuse using the STAR SRepository. This documefit contains the,
IBM STARS Repository Guidebook, STARS Repository User',s Guide, and STARS Reusability
Guidelines. Each is described below. I

~- IM SARS epoitor Gudebok: gude to the STARS Repository, providing high-
level information for all users -- component reusers, component suppliers, and
repository administrators. The Guidebook is organized according to the specific
roles that users perform when using the system.

,STARS Repository User's Guide, A guide on how to access and use the STARS lJeposi-
tory. It provides the basic information needed to use the repository software, but
it is not a comprehensive guide to the VAX computer, on which the repository is

TARS Reusabilit ' Guidelines. A set of Ada coding guidelines for component develop-
~- mnt hatemphasize reusability. Code that follows these guidelines will be easier
to reuse on multiple vroiects and platforms . Many exarrjes are nrov ied illu.sgtr tinj

14. SUBJECT TERMS the guidelines. /~1S. NUMBER OF PAGES
~ ~ F 201

UTA, Apiwt~ue,.o~wr o euse library, Ada coding, 16. PRICE CODE
guidelines, Ada, 1f~ 6)________

17. SECURITY CLASSIFICATION I fl. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 120. LIMITATION OF ABSTRACT
OF REPORT T1 OF THIS PAGE OF ABSTRACTI

[Unclassified IUnclassified Unclassified UL
-NSN 7540-01-280-SSOO Standard Form 298 (Rev 2-89)

Prer-!Shj, by ANSI Sto M3918

Abstract
This document describes the STARS project Ada coding guidelines, as they relate to reusability.
This document is part of a suite of documents that defime the use of the IBM STARS Repository.
The other documents are the IBM STARS Repository GuideBook and the IBM STARS Repository
User's Guide.

Accession For

NTIS GRA&I

DTIC TAB Q"
Unannounced [
Justificatio

By
-Di trbution/

Availability Codes

Avail and/or
Dist Special

Abstract

a

Preface
The guidelines in this document apply to all IBM STARS team tasks. In particular, they apply to
Ada code and related documentation as it is admitted to and managed within the IBM STARS
Repository.

These guidelines were originally published in the Consolidated Reusability Guidelines [IBM03801.
Essentially, the guidelines are the same as the guidelines which were collectively established by the
STARS prime contractors in the STARS Q-Increment. Some of the original guidelines were
modified for clarity and depth of definition. A few were eliminated due to experiences and
comments since they were published. The guidelines have also been adjusted to match the metrics
produced by the Repository metric collection tool.

This document was developed by the IBM Systems Integration Division, located at 800 North
Frederick, Gaithersburg, MD 20879. Questions or comments should be directed to the author,
Robert W. Ekman at (301) 240-6431, or to the IBM STARS Program Office.

Preface iii

Table of Contents
Introduction .. 1
Coding Style Guidance...1I
Coding Guidelines Summary ... 2

Coding Guidelines ... 4
General Design Guidelines ... 4
Comments...............................6
Declarations and Types... 7
Names ... 9
Statements... 10
Subunits 1
Exception Ha ding 12
Implementation Dependencies... 15
Input and Output.. 15

References .. 18

Glossary ... 21

Index ... 23

Table or Contents iv

Introduction
This document presents a set of Ada coding guidelines for component development that emphasize
reusability. By following these guidelines, your code will be easier to reuse across multiple projects
and platforms. Compliance to these guidelines will increase the level of acceptance within the
Repository component evaluation process.

Where appropriate, the following information is provided:

* A brief statement of the guideline,
* A detailed explanation of its meaning,
* A rationale on why the guideline is needed,
" Suggestions on how to apply the guideline, and
" Examples to illustrate the use of the guideline.

The guidelines were developed through a review of existing documentation and consolidation
within the STARS project. The guideline numbers are derived from corresponding guidelines in
Consolidated Reusability Guidelines [IBM3801. The numbers were originally derived roughly from
the section numbering in the Reference Manual for the Ada Programming Language [ADA83].

Coding Style Guidance
Col. Whitaker established the STARS program philosophy with the following note:

STARS does not wish to impose an excessive or restrictive style on the programmer. A sensible
attention to readability and portability should be sufficient guide.

STARS style recommendations have to be consistent with the widest variety of operations, including
the thousands of individual shops which may have local ideas, restrictions, and formats enforced by
local methods. STARS, therefore, is not restrictive without compelling reason, especially in those
areas where it possible to machine restructure the code to any desired style.

STARS sets no specific formatting requirements, as a matter of principle. The philosophy is that one
might expect to receive code from various organizations with different ways of doing things. The
government will pretty-print to Ada LRM style. The only style limitation is that one should not
attempt to encode information (e.g., into the case of identifiers, since Ada is case insensitive), or use
other non-Ada conventions. The government should be able to restructure and extract code
information that is processable by an Ada compiler.

STARS is trying to develop a software technology to be used by the DoD, not just to control a small
group of in-house programmers. The government should not over-specify those things it can easily
adapt. Style guidelines that impose more rigid formatting rules are officious pedantry, but very
common. Conventions like -TYPE" may be used by some groups; STARS would not interfere, nor
would it attempt to impose them on anyone else.

Arbitrary restrictions to the full capability of Ada (such as unnecessary injunction against 'use') are
inappropriate. Each local shop may, for its own reasons, add additional restrictions, although
STARS would recommend against anything that would limit the expressiveness of Ada. Examples
of oppressive limitations include: no 'function' in Ada PDL so it can be mapped to COBOL; no
"ir nested under an 'if', because a tool was derived for a language without 'elsif"; forbidding the use
of 'use', thereby denying much of Ada overloading; forbidding the 'while' construct in favor of loops
with exit.

Introduction

STARS is experimenting with using SGML encoding for program prologue information so it can be
computer processed. This documentation technique is considered separable from 'Ada style, and
would be the subject of other guidelines.

Coding Guidelines Summary
The following is a summary of the reusability coding guidelines. It can be used as a checklist during

code development.

Design

* 1-1-3 Make cohesion high within each component.
* 1-2-1 Make coupling low.

1 1-2-2 Document each interface thoroughly.
• 1-3-1 Isolate compiler, operating system and machine dependencies.
* 1-3-2 Make all dependent components reusable.

Comments

• 4-1-1 Make each comment adequate, concise and precise.
* 4-2-1 Document each subprogram with a Subprogram Specification Comment Block.

Declarations and Types

General

• 5- 1-1 Avoid anonymous types.
* 5-1-2 Try to use limited private types.
0 5-1-3 Use range constraints on numeric types.
* 5-1-5 Avoid predefined and implementation defined types.
* 5-1-6 Explicitly specify the precision required.
* 5-1-7 Use attributes instead of explicit constraints.

Arrays

* 5-2-1 Explicitly declare a type to use in defining discrete ranges.
* 5-2-2 Do not hard code array index designations.

Names

* 6-1-1 Use descriptive identifier names.
* 6-1-2 Keep identifier names less than 80 characters long.
* 6-1-5 Do not overload names from package STANDARD.

Statements

* 7-1-1 Use explicitly declared types for integer ranges in the loop statement.
* 7-2-1 Use elsif for nested if statements.
* 7-3-1 Avoid using the when others clause as a shorthand notation.

Subunits

• 8-1-3 Use named constants for parameter defaults.
* 8-1-7 Use named parameters if there is more than one parameter.
* 8-1-8 Make components complete.
* 8-1-9 Write each module so it has high cohesion.
* 8-1-10 Use information hiding.

" Only put in the specification those declarations that must be seen externally.
" Only with compilation units that are really needed.
" Use private and limited private types to promote information hiding.

* 8-2-1 Use descriptive named constants as return values.

Exceptions

Introduction 2

Design

* 9-1-6 Never use the when others construct with the null statement.
* 9-1-7 Avoid pragma suppress.
* 9-1-8 Handle exceptions as close as possible to where they are first raised.
* 9-1-9 Imbed potential elaboration exceptions in a frame.

Propagation

* 9-2-1 Do not propagate an exception beyond where its name is visible
* 9-2-2 Do not propagate predefined exceptions without renaming them.

Usage

• 9-3-2 Do not execute normal control statements from an exception handler.

Documentation

* 9-4-1 Document all exceptions which will be propagated.
* 9-4-2 Clearly list in subprogram specification comment blocks all the conditions that

raise exceptions for each operation.

Parameters

* 9-5-1 Be sure that out parameters cannot be undefined.

Implementation dependencies

Design

* 11-1-1 Isolate implementation dependencies.
• 11-1-3 Avoid optional language features.

Pragmas

* 11-2-1 Avoid using pragmas.
* 11-2-2 -If pragmas are used, isolate and thoroughly document them.

I/O
* 12-1-1 Encapsulate I/O uses into a separate I/O package.
* 12-2-4 Do not rely on NEW PAGE.
* 12-2-5 Document implementation dependent procedures.
* 12-3-2 Close files before a program completes.
• 12-5-1 Do not input or output access types.

Introduction

Coding Guidelines

General Design Guidelines

The following quote sums up the general design issues:

'Reusability is first and foremost a design issue. If a system is not designed with reusability in mind,
component interrelationships will be such that reusability cannot be attained no matter how
rigorously coding or documentation rules are followed [AUSNI85].'

Many of the design guidelines listed here are simply good software engineering principles. However,
the reverse is not necessarily true; simply following good software engineering principles will not
always lead to reusable software [AUSNI85].

Design Guidelines on Generality and Completeness: Designing for generality means making the
component easy to adapt to new situations.

Efficiency should be considered when designing for generality. Often algorithms exploiting special
properties of a problem may be more efficient than algorithms meant to solve a more general
problem.

Completeness means that components should have all functions and operations for current and
future needs. Ideally, each component should contain all of the functionality that can be associated
with such a component.

Obviously, it is impossible to achieve this for any component, but completeness is still a useful goal.
To enhance reusability, components should be made as complete as is practical. Completeness
causes development effort to be spent on features not needed for the current project, but probably

needed on future projects. It should be tempered by development cost, benefits provided by the
component, and likelihood of use.

To achieve generality and completeness, the following guidelines should be followed.

1-1-3 Make Cohesion High Within Each Component: Cohesion is the degree to which the
statements in a component form a coherent whole. The most coherent components do just one
thing, whether it be manipulating an object or performing a function.

Although not sscntial for reuse, cohesion is a desirable attribute, because components with high
cohesion are likely to be easier to understand and more tailorable, since related code will tend to
concentrate in one place.

Cohesion is not measurable, except by inspection. According to [STEVE74 there are several layers

of cohesion, listed here from lowest to highest.

Coincidental cohesion The module does tasks that are related loosely or not at all.

Logical cohesion The tasks are related in some logical way.

Temporal cohesion The tasks are related in some way and must be done in the same time
span.

Communicational cohesion All processing elements of a task refer to the same set of input or
output data.

Coding Guidelines 4

Sequential cohesion Output data from one element of the module is input for the next

element.

Functional cohesion All elements of a module are related to performing a single functiun.

In this scheme, low levels of cohesion should be avoided as much as possible. Middle levels of
cohesion are about as good as high levels. In practice, it is not necessary to improve the cohesion
of a component once it is in the middle range.

[EMBLE87 suggests another way to measure cohesion, by the absence of four strengths --
separable, multifaceted, non-delegation, and concealed. These are defined as follows for abstract
data types (ADTs), but the ideas can be generalized to all reusable components.

separable strength An ADT part has separable strength if the part exports an operator
(function or procedure) that does not use a domain of the ADT it
exports; or the part has a logically exported domain of the ADT that no
operator of the part uses; or the part has two or more logically exported
domains whose operators do not share any of the domains of the ADT.

multifaceted An ADT part has multifaceted strength if it does not have separable
strength, and it exports two or more domains of the ADT. Because it is
not separable some operator must share two or more exported domains.

non-delegation An ADT part has non-delegation strength if it has neither separable nor
multifaceted strength, and it has an operator that can be delegated to a
more primitive ADT.

concealed An ADT part has concealed strength if it has neither separable,
multifaceted, nor non-delegation strength and it has a logically hidden
ADT.

The above definitions are from [EMBLE871.

1-1-4 Make Components as Complete As Possible: Completeness means that components should
have all the functions and operations for current and future needs. Ideally, each component should
contain all the functionality that can be associated with such as component. This is, of course,
impossible in practice, but minimal guidelines can be established. The following guidelines
[SOMM89] concern specifically object-orientedcomponents. Each such component should include,
either explicitly or implicitly, the following operations.

1. Operations to create and initialize objects of the abstract type. These operations should be
provided explicitly for limited private types, but can be provided implicitly for all other types.

2. Operations to access and to change the value of each attribute of the implemented object or
type.

3. Operations to assign objects of the implemented type and to test for equality. Again, these
should be provided explicitly for limited private types, but can be provided implicitly for all
other types.

4. Test functions for every exception the component can raise.

Furthermore, if the abstract type is a composite type, then the following operations should also be
provided.

I. Operations to add and delete objects from the collection.

2. An iterator, which allows each element to be visited.

3. Functions to obtain information about the attributes of the collection as a whole (such as its
size).

Design Guidelines on Interfaces: Well-defined interfaces are important for reusability. Below are
some guidelines on interface design.

Coding Guidelines 5

1-2-1 Make Coupling Low: Coupling measures how much modules depend on one another. It
depends on the interfaces between modules, the data that pass between them, and the control
relationships. Coupling should be as low or loose as possible. This helps make dependencies both
clear and isolated, thus making components easier to reuse.

According to [STEVE74] there are several levels of coupling, listed here from lowest to highest.

No coupling The modules are independent and do not communicate.

Data coupling Communication is limited to passing simple arguments.

Stamp coupling A variation of data coupling, where part of a data structure is passed, rather
than simple arguments.

Control coupling Data of a control nature are passed. An example is the passing of a control
flag.

External coupling Modules are tied to specific external environments. For some modules this
may be unavoidable, but environment dependence should be isolated as
much as possible.

Common coupling Modules share data in a global data area.

Content coupling One modules uses the data within the boundary of another module.

In this scheme, coupling should be as low as possible, both for components and for modules
making up components. For some modules it may not be possible to achieve the lower levels of
coupling (no coupling, data coupling). An effort should be made, however, to build modules with
coupling as low as possible in the above scale.

Another way to measure coupling comes from [EMBLE87]. In this scheme two compilation units
are visibly coupled if one directly accesses the data structures of the other. They are surreptitiously
coupled if one uses undocumented information about the other's data structures. Finally, they are
loosely coupled if they are neither visibly nor surreptitiously coupled. In the scheme, the goal is to
make components loosely coupled.

1-2-2 Document Each Interface Thoroughly: Well-documented interfaces are important for building
reusable components. This will allow programmers to easily understand new code and thus lower
the cost of reuse. To thoroughly document interfaces, do the following.

" For generics, explain each formal parameter.

* For subprogram, function and task interfaces, explain each parameter.

* If the interface is unusually complex, describe it thoroughly in a document.

Other Design Guidelines

1-3-2 Make All Dependent Components Reusable: A component is not fully reusable unless all the
components it withs are reusable. If a component depends on components that are not reusable,
then there is a potential for portability and tailorability problems. Thus, when submitting a reusable
component to the filtered repository, make sure that all the components it depends on are reusable
as well. That is, make sure that each component that is depended on complies with the guidelines
in this document.

Comments

General Guidelines

4-1-1 Make Each Comment Adequate, Concise and Precise: This will obviously make the
component more readable and thus easier to tailor.

Coding Guidelines 6

Specific Kinds of Comments: These guidelines recommend the following kinds of comments:

" Exception Documentation Blocks and
* Subprogram Specification Comment Blocks.

Exception documentation blocks are described in "9-4-1 Document All Exceptions Which Will Be
Propagated from an Operation in an Exception Documentation Block" on page 14. Subprogram
Specification Comment Blocks are described below.

4-2-1 Document Each Subprogram with a Subprogram Specification Comment Block: A
subprogram specification should clearly state the intended function of the subprogram. To do this,
use a Subprogram Specification Comment Block before each subprogram specification. Give the
name of the subprogram and a description of its function. List specific design details, such as
conditions that raise exceptions. Be sure to include the conditions that will cause predefined
exceptions to be raised and multiple conditions that can cause the same exception.

The comment block could appear with a line of asterisks above or below it. Blank lines might also
be placed above the comment block to act as separators. The comment block or part of it could
also appear in the body as subprogram commentary. The following example shows a Subprogram
Specification Comment Block.

-- < STRINGTODYNSTRING

-- < Function:
-- < Return a dynamic string given an Ada string
-- < Detail:
- -< if length (ADASTRING) > MAXDYNAMICSTRINGLENGTH then

raise STRING TOO LONG
-- < if ADASTRING = NULL then

return NULL dynamic string
-- < if ADA STRING /= NULL then

return a dynamic string representation of ADASTRING

Declarations and Types

All the guidelines in this section are designed to improve portability or tailorability.

General Guidelines

5-1-I Avoid Anonymous Types: An anonymous type is a type without a simple name. Consider the
following example.

Schedule: array Ql..5) of Day;

Here the type array (L..5) of Day has no simple name and is thus an anonymous types. There are
only a few cases in Ada where one can create anonymous types; array declarations are one; task
declarations are another. One should avoid anonymous types for several reasons:

" There is no self-explanatory type name.

* Using such anonymous types makes qualified expressions impossible. There is no type or
subtype to which the programmer can refer in order to qualify the expression.

" Anonymous type impede tailoring because the programmer cannot add assignment statements
like the one below without creating a common type beforehand.

A,B : array (POSITIVE range MIN .. MAX) of COMPONENT;begin
- - Some code
A := B; -- Produces a compile-time error

end;

Coding Guidelines 7

5-1-2 Try to Use Limited Private Types: Limited private types help hide design details from the
user. Use limited private types when you want neither equality nor assignment exported. If you
want these operators to be exported, then use private types instead.

There is one thing that should be kept in mind when using private or limited private types. When
limited private or private types are exported, the privacy requirement "propagates." That is, any
type that uses a limited private type in its declaration must itself be limited private. Also, any type
that uses a private type in its declaration must itself be either private or limited private.

For example, consider the following situation.

* Package A uses a limited private type for the DYN STRING.

type DYNSTRING is limited private;

* Package B uses package A and has a data structure that has DYNSTRING as a
subcomponent as follows.

type NUMBERRECORD is
record

FIELD1 : A.DYNSTRING;
FIELD2 : STACK;
FIELD3 : INTEGER;

end record;

* Package C uses package B and refers to the record of package B.

type TOTAL is
record

ENTRY : NUMBERRECORD;
TALLYLIST : INTEGER;

end record;

Since package A declares DYNSTRING as a limited private type, then package B must define the
NUMBER RECORD as a limited private type. Package C must use TOTAL as a limited private
type because it refers to the NUMBER-RECORD of package B.
This propagation of limited/non-limited private type requirements could cause major rework for
packages being modified to use components that use private types. Thus, we believe that a reuse
repository should store information on each Ada component on whether the component is based
on limited private, private, or non-private types. This would help users select suitable components.

5-1-3 Use Range Constraints on Numeric Types: This causes the compiler to issue a message if the
range cannot be supported. The range constraints should be meaningful to the application.
[BARNE841

5-1-5 Avoid Predefined and Implementation Defined Types: Avoid declaring objects of predefmed
types such as INTEGER. Predefmed types are not likely to be portable because their form can vary
from Ada implementation to Ada implementation.INTEGER, avoid

5-1-6 Explicitly Specify the Precision Required: Each floating point or fixed point type should
explicitly specify the precision, using the delta or digits accuracy definition. This will make clear
any assumptions made about accuracy of calculations.

5-1-7 Use Attributes Instead of Explicit Constraints: Consider the following example from

[NISSE841.

A: array (DISCRETE_TYPE) of F;

for'i in DISCRETE_TYPE loop
exit when ACI) < SUM * F'EPSILON;
SUM := SUM + A(I);

end loop;

Coding Guidelines 8

This example assumes that the series A(I) + A(2) + A(3) + converges when all terms are
positive. Because the loop depends on F's model numbers and not on explicit constraints, all Ada
implementations should have the same accuracy.

Guidelines for Arrays

5-2-1 Explicitly Declare a Type to Use in Defining Discrete Ranges: Use explicitly declared types
for discrete ranges. That is, use

type DISCRETERANGE is range 1..TABLESIZE;
type TABLE is array (DISCRETERANGE) of ELEMENT-TYPE;

instead of

type TABLE is array (1..TABLESIZE) of ELEMENT-TYPE;

[PAPPA85, p. 281

This provides several benefits. There will be fewer logic errors when components are tailored,
because the compiler will have already caught them when it checked for type inconsistencies. Also,
the code will be more portable, since the compiler can select the best internal representation for the
numeric type requested by the range declaration.

Unfortunately, using explicitly declared types for integer discrete ranges does not always lead to easy
to read code. Type conversions may be needed to convert, among explicitly declared types. The
combination of long type names and required type conversions results in long multi-line Ada
statements that are hard to read. Nevertheless, we believe the advantages of using explicitly declared
types for integer discrete ranges outweigh the disadvantages.
5-2-2 Do not hard code array index designations: Do not hard code array index designations, as

below.

type TABLE is array (1..50) of ELEMENT_TYPE;

Use types or subtypes instead, because the additional declaration will make the code more
self-documenting and thus more tailorable. The upper or lower bound may be an index that will
change at some time. The subtype or type declaration will allow the change to be made once
instead of many times throughout the program.

Names

6-1-I Use Descriptive Identifier Names: Use descriptive identifier names to promote readability and
self-documentation. Descriptive identifier names make the code clearer. Names should be as long
as necessary to provide the needed information and to promote readability. They should be
considered part of the documentation of the component.

6-1-2 Keep Identifier Names Less Than 80 Characters Long: Keep identifiers less than 80 characters
long, because some Ada implementations use 80 characters as the maximum identifier length.
Furthermore, some display devices are limited to 80 characters, since they lack the ability to format
larger strings.

6-1-5 Do Not Overload Names from Package STANDARD: Ada names predefined in package
STANDARD should not be redefined or 'overloaded'. [RYMER86, p. 51 This keeps the reader
from confusing the overloaded names with the names predefined in package STANDARD. There
is an exception to this rule -- it is permissible to overload the names of operators.

Naming Conventions: Besides the above guidelines, there is no specific naming convention for
identifiers in these guidelines. It is assumed that a component retrieval system will exist which will
provide tools to analyze component information. The tools will have powerful analytical
capabilities, so that a naming convention will not improve the analysis. It will only place

Coding Guidelines 9

unnecessary constraints on the programmer. However, if the component retrieval tools are not as
powerful as anticipated, a naming convention may prove useful, and one should be considered.

Statements

Loop Statement

7-I-1 Use Explicitly Declared Types for Integer Ranges in the Loop Statement: This will improve
portability. If no type name is specified, INTEGER is used as the default, which can result in a
discrete range being invalid under some Ada implementations. By using type designations, the logic
can be more independent of the data.

The following example shows a loop range that should not be used.

for I in 1..MAXNUMAPPLES ...

end'ioop;

Instead, do the following.

type APPLECOUNT_TYPE is range 1..MAX_NUMAPPLES;
for I in APPLECOUNT_TYPE loop ...

end'ioop;

If Statement

7-2-1 Use Elsiffor Nested If Statements: This reduces the neting levels of the if statements, giving
the code a clean, uncluttered appearance. It also emphasizes the equal status of each if statement.

The following is an example from [BARNE84, p. 50] of nested if statements.

if ORDER = LEFT then
TURN-LEFT;

else
if ORDER = RIGHT then

TURNRIGHT;
else

if ORDER = BACK then
TURNBACK;

end if;
end if;

end if;

The example below shows the above example with clsifs.

if ORDER = LEFT then
TURN-LEFT;

elsif ORDER = RIGHT then
TURNRIGHT;

elsif ORDER = BACK then
TURN-BACK;

end if;

Case Statement

7-3-1 Avoid Using the When Others Clause as a Shorthand Notation: The when others clause of
the case statement should not be used as a shorthand to handle all cases that have not been listed.
Instead, explicitly handle each case and omit the when others clause. If the component is later
modified to add more values to the data type, this will call attention to the fact that the new values
are not handled in the case statement. If the when others clause was used, the new data values
would be handled by this clause and the operation on the data might be incorrect.

If there is a long list of conditions to be enumerated, use ranges and vertical bars to simplify listing
all possible values as in the following example:

Coding Guidelines 10

begin
case X is

when AA =>
-- Some stuff

when DD =>
-- Other stuff

when BB..CC I EE..ZZ =>
-- The Other other stuff

end case;
end;

Subunits

General Guidelines

8-1-3 Use Named Constants for Parameter Defaults: Use named constants as parameter defaults
whenever they would help the reader to better understand the code. For example, this

procedure READ (VALUE : out ELEMENTTYPE;
GROUP : in TAGGROUP_TYPE DEFAULTGROUP);

is easier to understand than this.

procedure READ (VALUE : out ELEMENTTYPE;
GROUP : in TAGGROUP_TYPE 0);

8-1-7 Named Parameters: We do not believe that a set of guidelines should require named
parameter association. This should be a user-selectable option with an intelligent formatter. Until
such formatters are available, the following are some recommendations on the subject.

1. If there is more than one parameter in the called subprogram, then use named parameter
association. This will make the interface clear to the user and make the code self-documenting,
particularly when the component user is not supplying all of the possible parameters.

2. If the called subprogram only has one parameter, then use of named parameters is up to the
coder. The determining factor should be whether use of the named parameter association will
improve readability. Using parameter names in the interface of single parameter function calls
particularly hinders readability.

8-1-8 Make Components Complete: Reusable components should be as complete as practical,
meaning that the component ideally has all operations to manipulate the given object. For
example, a stack package should have such operations as PUSH, POP, CLEAR STACK and
IS -EMPTY. This insures that any stack operation needed in the future will already exist and not
need to be coded.

Admittedly, this guideline cannot be fully realized in practice. Yet the goal of completeness is still
useful as something to strive for.

The guideline is easier to follow if standard interfaces have been established. For example, there is
a standard interface for stack packages, then it will be trivial to inspect a particular stack package
to tell whether it provides all the required operations.

8-1-9 Write Each Module So It Has High Cohesion: Cohesion is a measure of the degree to which
the statements in a component form a whole. The most coherent components do just one thing,
whether it be manipulating an object or performing a function. Cohesion should be maximized
whenever possible.

One way to achieve high cohesion is to use an object-oriented design. Such a strategy makes it easy
to detect low cohesion. [STDEN861

8-1-10 Use Information Hiding: There are three guidelines here.

* Only place in the specification section those declarations that must be seen externally.

Coding Guidelines !

* Only with those compilation units that are really needed. Only if the specification needs such
visibility should the context clause appear in the specification; otherwise it should appear in
the body. A tool could be written to catch unneeded withs.

* Use private and limited private types to promote information hiding.

The rationale comes from the good software engineering practice of minimizing the amount of
information visible to the outside world.

Guidelines on Subprograms

8-2-1 Use Descriptive Named Constants as Return Values: Named constants should be returned
whenever they would help the reader to understand the code. For example, it is more informative
to return the named constant NOTFOUND than to return the value -I.

Exception Handling
As stated earlier in this document, good exception handling is important to software reuse for

several reasons.

* Components with good error / exception handling have safety built in.

* Errors are isolated and well-documented.

• The way interfaces work is made clear. There are fewer hidden assumptions.

• The users have the freedom to decide whether to propagate exceptions further, to retry the
operation that raised the exception, to abandon the operation, or to continue regardless.

* Good exception handling makes components more tailorable and thus more reusable.

Exception Handling Design

9-1-6 Avoid Using the When Others Construct with the Null Statement: Use of the null statement
suggests that the exception is not used for an abnormal condition.

begin
loop

raise MISCELLANEOUS_ERROR;

end;*
exception
when others =>
null;

end;
-- rest of normal program code

In the above example a raise statement is used to exit the loop and to continue executing normal
control flow. This implies that there never was an abnormal condition.

9-1-7 Avoidpragma SUPPRESS: The Ada Language Reference Manual [ADA83] does not require
that pragma SUPPRESS be implemented. Pragma SUPPRESS does not guarantee that
exceptions will not be propagated to a unit for which exception suppression is in effect. The
execution of a program is erroneous if an exception occurs while pragma SUPPRESS is in effect.

9-1-8 Handle Exceptions as Close as Possible to Where They Are First Raised: This gives the
exception handler access to local data, which can be used to respond to the exception. It also
avoids losing visibility to the exception name.

When an exception is propagated to a scope outside its visibility, its name is lost. The exception
can only be handled by a when others handler. Such exceptions might be unwittingly handled by
a handler that was never intended to handle the exception.

Coding Guidelines 12

Below is an example of an exception handler making use of local data.

package body SEQUENTIAL_ACCESS_METHOD is

CURRENTRECORD : RECORDIDENTIFIER := STARTOFFILE;

procedure GET (FILE in FILETYPE;
REC out RECORD-TYPE) is

VALUE : RECORD_TYPE;
begin

VSAM.VGET(CATALOG => FILE,
INDEX => CURRENTRECORD + 1,
DATA => VALUE);

exception
when DEVICEERROR =>
ERRORIO.LOG("Error Occurred Reading Record"

amp
RECORD._IDENTIFIERIMAGE(CURRENTRECORD + 1));

end GET;
end SEQUENTIAL_ACCESS_METHOD;

9-1-9 Imbed Potential Elaboration Exceptions in a Frame: Unless special provisions are made,
elaboration exceptions are not handled in the unit being elaborated. Consider the following
example.

package ELABORATION_EXCEPTION_PKG is
S : STRING (1..2) := "Causes Constraint_Error";

end ELABORATIONEXCEPTIONPKG;

The Constraint_Error exception that is generated is not handled inside the package; it is propagated

out.

The solution is to imbed potential elaboration exceptions in a frame. To do this, do the following.

* Move declarations to declare blocks inside executable regions,

* Do initializations inside executable regions, and

* Encapsulate initializations within a subprogram to take advantage of Ada's strong typing, as
in the following example.

with INITIALIZATIONPKG;
package ELABORATIONEXCEPTIONPKG is
S : INITIALIZATIONPKG.NAMETYPE := INITIALIZATIONPKG.SETNAME;

end ELABORATION_EXCEPTION_PKG;

package INITIALIZATIONPKG is
subtype NAME_TYPE is STRING(1..2);
function SETNAME return NAMETYPE;

-- guarantees no CONSTRAINT_ERROR
end INITIALIZATIONPKG;

Exception Propagation

9-2-1 Do Not Propagate an Exception Beyond Where Its Name Is Visible: Do not propagate an
exception beyond where its name is visible. Otherwise, it can only be handled by a when others
handler.

9-2-2 Do Not Propagate Predefined Exceptions Without Renaming Them: Predefined exceptions
have no corresponding raise statement in the source code, so it is not always obvious that an
exception can be propagated. Predefined exceptions can be raised by many operations, making
them difficult to locate. Renaming predefined expressions makes it easier to pinpoint the exact
cause of each exception. For example, the predefined exception STORAGEERROR might be
propagated as MEMORY-FULL.

Coding Guidelines 13

Use of Exception Handling
9-3-2 Do Not Execute Normal Control Statements from an Exception Handler: Only use exception

handling for abnormal control flow, not for normal control.

Below is an example of poor use of exception handling.

begin
loop
TEXT_IO.GET(DATA_FILE,DATA_VALUE);

endloop;
exception

when TEXTIO.END_ERROR(DATA_FILE) =>
-- execute the rest of the program here

end;

In contrast, the following shows equivalent code without the use of an exception handler.

while not TEXTIO.ENDOFFILE(DATAFILE) loop
TEXT_IO.GET(DATA_FILE,DATAVALUE);

end loop;
-- execute the rest of the program here

Exception Documentation

9-4-1 Document All Exceptions Which Will Be Propagated from an Operation in an Exception
Documentation Block: An Exception Documentation Block shows which operations raise which
exceptions under what conditions. In this block, describe all the conditions that cause each
exception to be raised, including predefimed exceptions. This will help other developers in making
their designs complete.

Be sure to clearly associate each exception with every operation where the exception can be raised.
If the same operation can raise an exception for different reasons, record each reason separately.

The following is an example of an Exception Documentation Block.

STRINGTOOLONG : exception;

-- Raised By On Condition

-- INSERT the size of the string with the
insertion exceeds MAX_DYNAMIC_
STRINGLENGTH

-- REPLACE the size of the string with the
replaced part exceeds MAXDYNAMIC_
STRINGLENGTH

9-4-2 Clearly List in Subprogram Specification Comment Blocks All the Conditions That Raise
Exceptions For Each Operation: This includes the conditions that will cause predefimed exceptions
to be raised and includes multiple conditions that can cause the same exception.

Exception Handling Parameter Usage

9-5-I Be Sure That Out Parameters Cannot Be Undefined Upon Return from a Subprogram If an
Exception Occurs: Never depend on the value of out parameters or return values when designing
a handler response. When an exception occurs while evaluating the right side of an expression, then
the current value of the variable stays the same. The values of scalar out parameters which are not
updated are undefined. Thus, the exception handler should set the values of scalar parameters
before returning.

Coding Guidelines 14

Implementation Dependencies

Design Considerations

11-1-1 Isolate Compiler, Operating System and Machine Dependencies dependencies: To make
components portable, avoid optional language features and Ada implementation dependencies.
Where this cannot be done, isolate such uses, so users can plug in new versions easily. Document
all such uses. Both encapsulation and documentation will reduce the effort to port a component
to a new implementation.

Write code to ignore details of underlying implementations. Components should be designed
without reference to the surrounding environment. Contact between a component and its
environment should occur through explicit parameters and explicitly invoked subprograms.
[PAPPA85, p. 7]

11-1-3 Avoid Optional Language Features: For example, avoid using
UNCHECKED DEALLOCATION and UNCHECKEDCONVERSION. These two
procedures are optional and implementation dependent. If you use these procedures, document
their use. Environment_Imposed Restrictions and Compiler DependentRestrictions.

Pragmas

11-2-1 Avoid Using Pragmas: Pragmas are generally environment dependent. Sometimes, though,
their use may be unavoidable.

Pragma INTERFACE may be needed to specify interfaces with subprograms of other languages.
Pragma ELABORATE may be needed to insure that a program is correctly elaborated no matter
what compiler is used, since elaboration order varies from compiler to compiler. However, take
care that pragma ELABORATE is essential and not needed because the component is overly
complex.

11-2-2 If Pragmas Are Used, Isolate and Thoroughly Document Them: If they must be used, they
should be isolated as much as possible.

Those components which use pragmas should be documented, pointing them out and describing
their effects. Pragmas.
For example, use of pragma INLINE in a reusable component should be documented. Its use can

force the user's code to depend on the body of the reusable component. Since this effect is usually
unexpected, take care to insure that the reuser is aware of the compilation issues caused by it.

Input and Output

General Guidelines

12-1-1 Encapsulate 1/0 Uses Into a Separate 1/0 Package: All input/output utilities should be
isolated into I/0 packages. This will make it easy for users to adapt the component to different
machines and operating systems.

Guidelines on Specific I/O Procedures and Functions

12-2-4 Do Not Rely on NEW PAGE: The Ada language standard does not specify the value of a
page terminator. Thus, the control characters may be non-portable across printers. One solution
is to always direct output to a file, which can then be filtered and altered to suit the device the
outpit is ultimately destined for.

12-2-5 Document Implementation Dependent Procedures: Use of the following procedures could
result in portability problems. Dependencies on such procedures should be documented.
PortabilityRestrictions.

* COL -- Depends on the implementation-defined subtype POSITIVECOUNT.

Coding Guidelines 15

* DIRECTIO.READ -- Reads from an index whose range POSITIVECOUNT is
implementation defined. The DIRECTIO.WRITE procedure could also cause similar
problems.

* ENUMERATION_IO.GET -- Returns an out parameter of the predefined types POSITIVE
or NATURAL to specify the LAST character input. It also has a WIDTH parameter of the
implementation-defined type FIELD.

* FIXED IO.GET -- Returns an out parameter of the predefined types POSITIVE or
NATURAL to specify the LAST character input. It also has a WIDTH parameter of the
implementation-defined type FIELD.

* FIXEDIO.PUT -- Has a WIDTH parameter of the implementation-defined type FIELD.

* FLOAT IO.GET -- Returns an out parameter of the predefined types POSITIVE or
NATUR AL to specify the LAST character input. It also has a WIDTH parameter of the
implementation-defined type FIELD.

* FLOATIO.PUT -- Has a WIDTH parameter of the implementation-defined type FIELD.

* GET LINE -- Returns an out parameter of the predefined types POSITIVE or NATURAL
to specify the LAST character input.

* INDEX -- Uses an index whose range POSITIVECOUNT is implementation-defined.

* INTEGERIO.GET -- Returns an out parameter of the predefined types POSITIVE or
NATURAL to specify the LAST character input. It also has a WIDTH parameter of the
implementation-defined type FIELD.

* INTEGERIO.PUT -- Has a WIDTH parameter of the implementation-defined type FIELD.

* LINE -- Depends on the implementation-defined subtype POSITIVECOUNT.

* LINELENGTH -- Depends on the implementation-defined type COUNT, whose upper
bound varies with each implementation.

* PAGE -- Depends on the implementation-defined subtype POSITIVE-COUNT.

* PAGELENGTH -- Depends on the implementation-defined type COUNT, whose upper
bound varies with each implementation.

* SETCOL -- Depends on the implementation-defined subtype POSITIVECOUNT.

* SET-LINE -- Depends on the implementation-defined subtype POSITIVE-COUNT.

* SETINDEX -- Uses an index whose range POSITIVECOUNT is implementation-defined.

* SET LINE LENGTH -- Depends on the implementation-defined type COUNT, whose
upper bound varies with each implementation.

* SET PAGELENGTH -- Depends on the implementation-defined type COUNT, whose

upper bound varies with each implementation.

* SIZE -- Uses an index whose range POSITIVECOUNT is implementation-defined.

[MATTH87b, p. 21

Furthermore, using procedures SKIPLINE and NEW LINE to skip more than one line at a time
may lead to portability problems, since they depend on the implementation-defined subtype
POSITIVECOUNT. Skipping one line will not cause any problems; however, skipping multiple
lines may not be portable depending on the constraint set by the Ada implementation.
IMATTH87b, p. 2]

File Handling

Coding Guidelines 16

12-3-2 Close Files Before a Program Completes: Different Ada implementations handle unclosed
files in different ways. The state of unclosed files after program termination is undefined. To
increase the reusability of a component, close all files before a subprogram terminates normally or
abnormally. Be sure to verify that a file is open before closing it so that the exception
STATUSERROR is not raised.

I/O of Access Types

12-5-1 Do Not Input or Output Access Types: The effect of I/O of access types is undefined. If
used, it may lead to components that are not portable. To output an object pointed to, output the
object. To output the address of an object pointed to, output the address of the object using
SYSTEM.ADDRESS. [MATTH87b, p. 1] Document the use of SYSTEM.ADDRESS.

Coding Guidelines 17

References
There are numerous coding guidelines available, particularly for Ada. The following is a list of
references for the STARS reusability coding guidelines.

JADA831 Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A-1983, February, 17 1983.

[AH0741 Aho, A. V., J. E. Hopcroft and J. D. Ullman, The Design and Analysis of
Computer Algorithms, Readding, Mass.: Addison-Wesley, 1974.

[AUSNI85I Ausnit, Christine, Christine Braun, Sterling Eanes, John Goodenough,
Richard Simpson, Ada Reusability Guidelines, SotTech, Inc., April 1985.

IBARNE841 Barnes, J.G.P., Programming in Ada, 2nd edition. Addison-Wesley
Publishers Limited, 1984.

[BEN TL85 Bentley, Jon, "Programming Pearls," Communications of the A CM, vol. 28,
no. 7 July 1985.

IBOOCH871 Booch, Grady, Software Components With Ada. The Benjamin/Cummings
Publishing Company, Inc., 1987.

IEMBLE871 Embley, David W. and Woodfield, Scott N., "Cohesion and Coupling for
Abstract Data Types." Proceedings, Sixth Phoenix Conference on Computers
and Communications, Phoenix, Arizona, February 1987.

IEVBSE871 EVB Software Engineering, Inc., Creating Reusable Ada Software, 1987.

JIBM03401 IBM Systems Integration Division, Informal Technical Report on Findings
During the Rebuild of Common Capabilities, CDRL Sequence No. 0340,
February 19, 1989.

[IBM03601 IBM Systems Integration Division, Reusability Guidelines, CDRL Sequence
No. 0360, December 17, 1988.

IBM03701 IBM Systems Integration Division, Reusable Component Data Analysis,
CDRL Sequence No. 0370, February 10, 1989.

JIBM03801 IBM Systems Integration Division, Consolidated Reusability Guidelines,
CDRL Sequence No. 0380, March 21, 1989.

References 18

[IBM04601 IBM Systems Integration Division, Repository Guidelines and Standards,
CDRL Sequence No. 0460, March 17, 1989.

JIBM05201 IBM Systems Integration Division, Long Term Configuration Management
Plan for the STARS Repository, CDRL Sequence No. 0520, March 17,
1989.

IIBM07101 IBM Systems Integration Division, DTD Definition: Internal
Documentation, CDRL Sequence No. 0710, January 16, 1989.

IMATSUS41 Matsumoto, Y., "Some Experiences in Promoting Reusable Software
Presentation in Higher Abstract Levels," IEEE Transactions on Software
Engineering, vol. SE-10 (5), September 1984.

jMAT'IH87aj Matthews, E. R., IBM Federal Systems Division Guide for Reusable Ada
Components (Draft), September 17, 1987.

[MATI'H87b] Matthews, E. R., "Observations on the Portability of Ada I/O", A CM
SIGAda Letters, vol. VII, no. 5, September/October 1987.

IMCILR681 Mcllroy, M. D., "Mass Produced Software Components," Report on a
conference by the NATO Science Committee, Garmisch, Germany, October
7-11, 1968.

IMENDA881 Mendal, Geoffrey 0., 'hree Reasons to Avoid the Use Clause," ACM
SIG.Ada Letters, vol. VIII, no. 1, January/February 1988.

INISSE841 Nissen, John and Peter Wallis, Portability and Style in Ada, Cambridge

University Press, 1984.

JPAPPA85' Pappas, Frank, Ada Portability Guidelines, SofTech, Inc., March 1985.

IRACIN881 Racine, Roger, "Why the Use Clause is Beneficial," ACM SIGAda Letters,
vol. VIII, no. 3, May/June 1988).

IROSEN871 Rosen, J. P., "In defense of the 'use' clause," ACM SIGAda Letters, vol.
VII, no. 7, November/December 1987.

[RYiN'ER861 Rymer, John and McKeever, Tom., The FSD Ada Style Guide, 1986.

ISOMM891 'Sommerville, I., Software Engineering, 3rd. edition, Addison-Wesley, 1989.

ISTDEN861 St. Dennis, R., P. Stachour, E. Frankowski, and E. Onuegbe, "Measurable
Characteristics of Reusable Ada Software," A CM SIGAda Ada Letters, vol.
VI, no. 2, March/April 1986.

ISTEVE741 Stevens, W. P., G. J. Myers, and L. L. Constantine, "Structured design."
IBM Systems Journal, 1974, no. 2.

References 19

JINISYSO3401 Unisys Corporation, Draft Technical Report on Reusability Guidelines,
CDRL 0340, February 14, 1989.

References 20

Glossary
The following terms and definitions describe component attributes and design issues, as used in

these guidelines.

anonymous type: A type without a simple name.

cohesion: A measure of the degree to which the code in a module forms a coherent whole.

contact: The contact is the person in the producing company who is the 'point of contact' for that
particular part or product. Point of contact refers to the person who is familiar with the product,
and can either answer questions about it, or can refer people to someone who can answer them.

coupling: A measure of how much components or modules depend on each other. Coupling
depends on the interfaces between modules, the data that pass between them, and the control
relationships.

dynamic stack: The stack of calls made at runtime.

exception documentation block: A comment that documents an exception.

frame: An Ada language construct that surrounds an exception handler. A frame can be a block
statement or the body of a subprogram, a package, a task, or a generic.

functional completeness: The idea that components should have all functions and operations
required for current and future needs.
independence: The ability of a component to be used with different compilers, operating systems,
machines and applications than those for which it was originally developed. Independence is closely

related to portability.

maintainability: The ease of modifying a component, whether it be to meet particular needs or to
fix bugs.

order (of an algorithm): A measure of the computational efficiency of an algorithm, expressed in
terms of the frequency of some key operation. For more information, see [AH074].

overloading: The property whereby Ada literals, operators, identifiers, and aggregates can have
unambiguous alternative meanings.

platform: Platform refers to the architecture for the system for which the product is intended
(hardware, operating system, and Ada compiler). Some products may be intended for several
different platforms. Platforms listed should also indicate whether they are host platforms, target
platforms, or both.

portability: The ability of an application or component to be used again in a different target
environment than the one it was originally built for. The phrase target environment may be defined
broadly to include operating systems, machines, and applications. To be ported effectively,
components may need to be tailored to the requirements of the new target environment. See also
reusability and independence.

reliability: The extent to which a component performs as specified. A reusable component
performs consistently with repeated use and across environments (that is, operating systems and
hardware).

Glossary 21

A

reusability: The ability to reuse a software component or to use it repeatedly in applications other
than the one for which it was originally built. In order to be effectively reused, the component
.nay have to be tailored to the requirements of the new application. See also portability.

subprogram specification comment block: A comment block that accompanies a subprogram
specification, giving its name and a description of its function.

tailorability: The ease of modifying a component to meet particular needs. It should be
distinguished from maintainability, which includes tailorability, but also includes the idea of
corrective maintenance (fixing bugs).

Glossary 22

Index

A context clause 12
control coupling 6
coupling 6, 21

access types, input / output of 17 coupling content 6

accuracy, stating assumptions on 8 coupling, common 6
anonymous type 7, 21 coupling, control 6
array index designations 9 coupling, data 6
arrays, guidelines on 9 coupling, external 6
assignment, exporting 8 coupling, stamp 6
attributes (Ada) 8 coupling, surreptitious 6

coupling, visible 6

C
D

case statement, guidelines on 10
closing files 17 data coupling 6
cohesion 4, 11, 21 declarations, guidelines on 7
cohesion, coincidental 4 declarations, moving inside declare blocks 13
cohesion, communicational 4 declarations, placement of 11
cohesion, functional 5 dependencies, implementation, guidelines
cohesion, logical 4 on 15
cohesion, sequential 4 dependencies, isolating 15
cohesion, temporal 4 dependent components reusable, making 6
coincidental cohesion 4 design details, hiding 8
COL procedure 15 design guidelines 4
common coupling 6 general design guidelines 4

communicational cohesion 4 DIRECTIO procedures READ and
compiler dependencies, isolating 15 WRITE 16
compiler-dependent restrictions 15 dynamic stack 21
completeness 4
completeness, functional 11, 21
components, dependent, making reusable 6 E
concealed strength 5
constants, named, as return values 12

design 12 efficiency 4
guidelines on 12 elaboration exceptions, i.bedding in

null statement and when others frame 13
construct 12 elsif, guideline on 10

when others construct and null ENUMERATIONJO procedure GET 16
statement 12 environment-imposed restrictions 15

constraints, explicit 8 equality, exporting 8
contact 21 Exception Documentation Block 7, 14, 21
contact, point of 21 external coupling 6
content coupling 6

Index 23

F use of, guidelines on 14
visibility, propagating exceptions 13

initializations, within executable regions 13
file handling, guidelines on 16 input / output of access types 17

FIXED_10 procedure GET 16 input / output packages 15
input / output, encapsulating uses of 15FIXED_10 procedure PUT 16 inptit / output, guidelines on 15

floating point types, specifying precision of 8 integer ranges in loop statement 10
FLOAT_10 procedure GET 16 INTEGER type, avoid 8
FLOAT_10 procedure PUT 16 INTEGER-10 procedure GET 16
frame 21 INTEGERIO procedure PUT 16
functional cohesion 5 INTEGERI0 procedure PUT 16
functional completeness 21 interfaces 5

interfaces, documentation of 6
interfaces, standard 11

G isolating 15

generality 4 L
GET procedure in ENUMERATION_10 16
GET procedure in FIXED 10 16
GET procedure in FLOAT 10 16 limited private types 8,12
GET procedure in INTEGER_10 16 LINE procedure 16
GETLINE procedure 16 lines, skipping 16

LINE LENGTH procedure 16
logical cohesion 4
loop statement, guidelines on 10

identifier names, conventions on 9 M
identifier names, descriptive 9
identifier names, eighty character limit on 9
identifier names, guidelines on 9 machine dependencies, isolating 15
identifier names, overloading 9 maintainability 21
if statement, guidelines on 10 model numbers 8
implementation defined types, avoid 8 multifaceted strength 5
implementation dependencies, guidelines
on 15

implementation dependent procedures, N
documenting 15

implementation details, hiding 8
independence 15, 21 named constants as return values 12
index designations 9 named constants for parameter defaults 11
INDEX procedure 16 named parameters, guidelines on 11
information hiding 8, 11, 12 names, conventions on 9
initializations, encapsulating within a names, descriptive 9
subprogram 13 names, eighty character limit on 9

documenting, guidelines on 14 names, guidelines on 9
Exception Documentation Block 14 names, overloading 9
handlers, executing normal control naming conventions 9
statements in 14 NEWLINE procedure 16

predefined, renaming 13 NEW-PAGE 15
propagating beyond where name is non-delegation strength 5

visible 13 null statement and when others construct,
propagating predefined exceptions 13 exception handling 12
propagating, guidelines on 13 pragma SUPPRESS 12
renaming predefined exceptions 13 numeric types, range constraints on 8

Index 24

O procedure SIZE 16
procedure SKIP-LINE 16
procedure

operating system dependencies, isolating 15 UNCHECKED-CONVERSION 15
optional language features, avoid 15 procedure
order of algorithm 21 UNCHECKED DEALLOCATION 15
out parameters and exceptions 14 procedures READ5 and WRITE in
overloading 21 DIRECT 10 16
overloading names from package procedures,documenting implementation
STANDARD 9 dependent 15

PUT procedure in FIXED 10 16
PUT procedure in FLOAT 10 16

p PUT procedure in INTEGER_10 16

package STANDARD, overloading names R
from 9

PAGE procedure 16
page terminator 15 range constraints on numeric types 8
PAGE LENGTH procedure 16 ranges, discrete 9
parameter defaults 11 ranges, integer, in loop statement 10
parameters, named, guidelines on 11 READ procedure in DIRECT_10 16
platform 21 readability 9
platform, definition of 21 reliability 21
point of contact 21 return values 12
portability 6, 7, 9, 15, 21 reusability 22
portability restrictions 15
POSITIVE COUNT subtype 15
pragma ELABORATE 15
pragma INLINE 15 S
pragma INTERFACE 15
pragma SUPPRESS 12 separable strength 5

elaboration, imbedding in frame 13 sequential cohesion 4
handle, where to 12 SETCOL procedure 16
handling close to where raised 12 SET INDEX procedure 16
where to handle 12 SETLINE procedure 16

pragmas, documenting 15 SETLINELENGTH procedure 16
pragmas, guidelines on 15 SET PAGELENGTH procedure 16
precision, explicitly specify 8 SIZE procedure 16
predefined types, avoid 8 skipping lines 16
private types 8, 12 SKIP-LINE procedure 16
procedure COL 15 stack, dynamic 21
procedure GET in ENUMERATIONIO 16 stamp coupling 6
procedure GET in FIXED_10 16 standard interfaces 11
procedure GET in FLOAT_10 16 statements, guidelines on 10
procedure GET in INTEGERR_10 16 STATUS ERROR exception 17
procedure GET LINE 16 STATUS ERROR 17
procedure INDEX 16 strength, concealed 5
procedure LINE 16 strength, multifaceted 5
procedure LINE-LENGTH 16 strength, non-delegation 5
procedure NEW LINE 16 strength, separable 5
procedure PAGE 16 Subprogram Specification Comment
procedure PAGELENGTH 16 Block 7, 14, 22
procedure PUT in FIXEDIO 16 out parameters 14
procedure PUT in FLOATIO 16 Subprogram Specification Comment
procedure PUT in INTEGER_10 16 Block 14
procedure SETCOL 16 subprogram specification, clearly stating the
procedure SET-INDEX 16 intended function 7
procedure SET LINE 16 subprograms, documenting 7
procedure SETLINELENGTH 16 documenting 7
procedure SETPAGE_LENGTH 16 subprograms, guidelines on 12

Index 25

subtype POSITIVECOUNT 15 U
subunits, guidelines on 11
surreptitious coupling 6
SYSTEM.ADDRESS 17 UNCHECKEDCONVERSION 15

UNCHECKEDDEALLOCATION 15

T

tailorability 6, 7, 22
guidelines on 6 visible coupling 6

temporal cohesion 4
types, 8
types, access, input / output of 17 W
types, anonymous 7, 21
types, floating point, specifying precision of 8
types, guidelines on 7 when others construct in case statement 10
types, implementation defined, avoid 8 when others construct, exception handling, null
types, limited private 8, 12 statement 12
types, predefmed, avoid 8 with clause 12
types, private 8, 12 WRITE procedure in DIRECT_10 16

Index 26

STARS

Reusability Guidelines

April 30, 1990

Contract No. F19628-88-D-0032

Task IR40: Repository Integration

Delivered as part of:
CDRL Sequence No. 1550

Prepared for:

Electronic Systems Division
Air Force Systems Command, USAF

Hanscomb AFB, MA 01731-5000

Prepared by:

IBM Systems Integration Division
800 North Frederick

Gaithersburg, MD 20879

Abstract

This document describes the STARS project Ada coding guidelines, as they relate to reusability. This
document is part of a suite of documents that define the use of the IBM STARS Repository. The other
de ments are the IBM-STARS Repository GuideBook and tile IBM STARS Repository User's Guide

Abstract

Preface

The guidelines in this document apply to all IBM STARS team tasks. In particular, they apply to Ada code
and related documentation as it is admitted to and managed within the IBM -STARS Repository.

These guidelines were originally published in the Consolidated Reusability Guidelines IBM0380. Essentially,
the guidelines are the same as the guidelines which were collectively established by the STARS prime
contractors in the STARS Q-Increment. Some of the original guidelines were modified for clarity and depth
of definition. A few were eliminated due to experiences and comments since they were published. The
guidelines have also been adjusted to match the metrics produced by the Repository metric collection tool.

This document was developed by the IBM Systems Integration Division, located at 800 North Frederick,
Gaithersburg, MD 20879. Questions or comments should be directed to the author, Robert W. Ekman at
(301) 240-6431, or to the IBM STARS Program Office.

Preface 2

Contents

Abstract

Pref'ace. 2

1. Introduction. I
Coding Style Guidance
Coding Guidelines Summary 2

2. Coding Guidelines 4
General Design Guidelines 4
Comments 6
Declarations and Typcs 7
Names 10
Statements 10
Subunits. 12
Exception I andling 13
Implementation Dependencies. 16
Input and Output 17

3. References 19

4. Glossary... 21

Index... 23

Contents I

1. Introduction

This document presents a set of Ada coding guidelines for component development that emphasize
reusability. By following these guidelines, your code will be easier to reuse across multiple projects and
platforms. Compliance to these guidelines will increase the level of acceptance within the Repository
component evaluation process.

Where appropriate, the following information is provided:

" A brief statement of the guideline,
" A detailed explanation of its meaning,
" A rationale on why the guideline is needed,
* Suggestions on how to apply the guideline, and
• Examples to illustrate the use of the guideline.

The guidelines were developed through a review of existing documentation and consolidation within the
STARS project. The guidelines are numbered consecutively by topics. The topics correspond roughly and
are defined in the same order as the the section numbering in the Reference Manual for the Ada
Programming Language [IADA83].

Coding Style Guidance

Col. Whitaker established the STARS program philosophy with the following note:

STARS does not wish to impose an excessive or restrictive style on the programmer. A sensible
attention to readability and portability should be sufficient guide.

STARS style recommendations have to be consistent with the widest variety of operations, including
the thousands of individual shops which may have local ideas, restrictions, and formats enforced by
local methods. STARS, therefore, is not restrictive without compelling reason, especially in those
areas where it possible to machine restructure the code to any desired style.

STARS sets no specific formatting requirements, as a matter of principle. The philosophy is that
one might expect to receive code from various organizations with different ways of doing things.
The government will pretty-print to Ada LRM style. The only style limitation is that one should
not attempt to encode information (e.g., into the case of identifiers, since Ada is case insensitive), or
use other non-Ada conventions. The government should be able to restructure and extract code
information that is processable by an Ada compiler.

STARS is trying to develop a software technology to be used by tile l)oD, not just to control a
small group of in-house programmers. The government should not over-specify those things it can
easily adapt. Style guidelines that impose more rigid formatting rules are officious pedantry, but very
common. Conventions like "-YP i" may be used by some groups; STARS would not interfere,
nor would it attempt to impose them on anyone else.

Arbitrary restrictions to the full capability of Ada (such as unnecessary injunction against "use") are
inappropriate. Each local shop may, for its own reasons, add additional restrictions, although
STARS would recommend against anything that would limit the expressiveness of Ada. Examples
of oppressive limitations include: no "function" in Ada 1l), so it can be mapped to COBOL; no
"if' nested under an "if," because a tool was derived for a language without "elsif"; forbidding the
use of "use," thereby denying much of Ada overloading; forbidding the "while" construct in favor of
loops with exit.

1. Introduction

STARS is experimenting with using SGML encoding for program prologue information so it can be
computer processed. This documentation technique is considered separable from "Ada style", and
would be the subject of other guidelines.

Coding Guidelines Summary
The following is a summary of the reusability coding guidelines. It can be used as a checklist during code

development.

Design

" DES-I Make cohesion high within each component.
• DES-2 Make components as complete as possible.
• DES-3 Make coupling low.
" DES-4 Document each interface thoroughly.
• DES-5 Make all dependent components reusable.
" IMP- I Isolate compiler, operating system and machine dependencies.

Comments

• COM- I Make each comment adequate, concise and precise.
* COM-2 Document each subprogram with a Subprogram Specification Comment Block.

Declarations and Types

General

* DEC-I Avoid anonymous types.
* DEC-2 Try to use limited private types.
* DEC-3 Use range constraints on numeric types.
• DEC-4 Avoid predefined and implementation defined types.
• DEC-5 Explicitly specify the precision required.
• DEC-6 Use attributes instead of explicit constraints.
* DEC-8 Declare invariants as constants
* DEC-9 Initialize variables during declaration

Arrays

• ARR-I Explicitly declare a type to use in defining discrete ranges.
• ARR-2 Do not hard code array index designations.

Names

• NAM- I Use descriptive identifier names.
• NAM-2 Keep identifier names less than 80 characters long.
* NAM-3 Do not overload names from package STANI)ARI).

Statements

" STA- I Use explicitly declared types for integer ranges in the loop statement.
• STA-2 Exit Basic LOOPs only via Conditional
• STA-3 Use clsif for nested if statements.
* STA-4 Avoid using the when others clause as a shorthand notation.

Subunits

, SUB-I Use named constants for parameter defaults.
" SU13-2 Use named parameters if there is more than one parameter.
• SUB-3 Make components complete.
• SUB-4 Write each module so it has high cohesion.
" SUB-5 Use information hiding.

I. Introduction 2

- Only put in the specification those declarations that must be seen externally.
- Only with compilation units that are really needed.
- Use private and limited private types to promote information hiding.
SUB-6 Use descriptive named constants as return values.

Exceptions

Design

* EXP- 1 Avoid the when others construct with the null statement.
* EXP-2 Avoid pragma suppress.
* EXP-3 Handle exceptions close to where they are first raised.
* EXP-4 Imbed potential elaboration exceptions in a frame.

Propagation

" EXP-5 Do not propagate an exception where its name is not visible
• EXP-6 Do not propagate predefined exceptions without renaming them.

Usage

* EXP-7 Do not execute normal control statements from an exception handler.

Documentation

" EXP-8 Document all exceptions which will be propagated.
" EXP-9 List all Conditions That Raise Exceptions in Subprogram Specification Comment

Blocks

Parameters

• EXP-10 Ensure that out parameters cannot be undefined.

Implementation dependencies

Design

- IMP-I Isolate implementation dependencies.
- IMP-2 Avoid optional language features.

Pragmas

" IMP-3 Avoid using pragmas.
* IMP-4 If pragmas are used, isolate and thoroughly document them.

I/O

* 10-1 Encapsulate !/0 uses into a separate 1/0 package.
* 10-2 Do not rely on NEWPAGE.
* 10-3 Document implementation dependent procedures.
* I0-4 Close files before a program completes.
* 10-5 Do not input or output access types.

1. Introduction 3

2. Coding Guidelines

General Design Guidelines

The following quote sums up the general design issues:

Reusability is first and foremost a design issue. If a system is not designed with reusability in mind,
component interrelationships will be such that reusability cannot be attained no matter how
rigorously coding or documentation rules are followed [AUSNI85.]

Many of the design guidelines listed here are simply good software engineering principles. llowever, the
reverse is not necessarily true; simply following good software engineering principles will not always lead to
reusable software [AUSNI85].

Design Guidelines on Generality and Completeness: I)esigning for generality means making the
component easy to adapt to new situations.

Efficiency should be considered when designing for generality. Often algorithms exploiting special properties
of a problem may be more efficient than algorithms meant to solve a more general problem.

Completeness means that components should have all functions and operations for current and future needs.
Ideally, each component should contain all of the functionality that can be associated with such a
component.

Obviously, it is hnpossible to achieve this for any component, but completeness is still a useful goal. To
enhance reusability, components should be made as complete as is practical. Completeness causes
development effort to be spent on features not needed for the current project, but probably needed on future
projects. It should be tempered by development cost, benefits provided by the component, and likelihood of
use.

To achieve generality and completeness, the following guidelines should be followed.

DES-I Make Cohesion High Within Each Component: Cohesion is the degree to which the statements in a
component form a coherent whole. The most coherent components do just one thing, whether it be
manipulating an object or performing a function.

Although not essential for reuse, cohesion is a desirable attribute, because components with high cohesion
are likely to be easier to understand and more tailorable, since related code will tend to concentrate in one
place.

Cohesion is not measurable, except by inspection. According to [STEVF-74] there are several layers of

cohesion, listed here from lowest to highest.

Coincidental cohesion The module does tasks that are related loosely or not at all.

Logical cohesion The tasks are related in some logical way.

Temporal cohesion The tasks are related in some way and must be done in the same time span.

Commtnicational cohesion All processing elements of a task refer to the same set of input or output data.

Sequential cohesion Output data from one element of the module is input for the next element.

Functional cohesion All elements of a module are related to performing a single function.

2. Coding Guidelines 4

In this scheme, low levels of cohesion should be avoided as much as possible. Middle levels of cohesion are
about as good as high'levels. In practice, it is not necessary to improve the cohesion of a component once it
is in the middle range.

[EMBLE87] suggests another way to measure cohesion, by the absence of four strengths -- separable,
multifaceted, non-delegation, and concealed. These are defined as follows for abstract data types (ADTs),
but the ideas can be generalized to all reusable components.

psearable strength An ADT part has separable strength if the part exports an operator (function or
procedure) that does not use a domain of the ADT it exports; or the part has a
logically exported domain of the ADT that no operator of the part uses; or the part
has two or more logically exported domains whose operators do not share any of
the domains of the AI)T.

multifaceted An ADT part has multifaceted strength if it does not have separable strength, and it
exports two or more domains of the AI)T. Because it is not separable some
operator must share two or more exported domains.

non-delegation An ADT part has non-delegation strength if it has neither separable nor multifaceted

strength, and it has an operator that can be delegated to a more primitive ADT.

concealed An ADT part has concealed strength if it has neither separable, multifaceted, nor
non-delegation strength and it has a logically hidden ADT.

The above definitions are from [EMBLE87].

DES-2 Make Components as Complete As Possible: Completeness means that components should have
all the functions and operations for current and future needs. Ideally, each component should contain all the
functionality that can be associated with such as component. This is, of course, impossible in practice, but
minimal guidelines can be established. The following guidelines [SOMM89] concern specifically
object-orientedcomponents. Each such component should include, either explicitly or implicitly, the
following operations.

1. Operations to create and initialize objects of the abstract type. These operations should be provided
explicitly for limited private types, but can be provided implicitly for all other types.

2. Operations to access and to change the value of each attribute of the implemented object or type.

3. Operations to assign objects of the implemented type and to test for equality. Again, these should be
provided explicitly for limited private types, but can be provided implicitly for all other types.

4. Test functions for every exception the component can raise.

Furthermore, if the abstract type is a composite type, then the following operations should also be provided.

I. Operations to add and delete objects from the collection.

2. An iterator, which allows each element to be visited.

3. Functions to obtain information about the attributes of the collection as a whole (such as its size).

Design Guidelines on Interfaces: Well-defined interfaces are important for reusability. Below arc some
guidelines on interface design.

DES-3 Make Coupling Low: Coupling measures how much modules depend on one another. It depends
on the interfaces between modules, the data that pass between them, and the control relationships. Coupling
should be as low or loose as possible. This helps make dependencies both clear and isolated, thus making
components easier to reuse.

According to [STEVE74] there are several levels of coupling, listed here from lowest to highest.

2. Coding Guidelines 5

No coupling The modules are independent and do not communicate.

Data coupling Communication is limited to passing simple arguments.

Stamp coupling A variation of data coupling, where part of a data structure is passed, rather than
simple arguments.

Control coupling Data of a control nature are passed. An example is the passing of a control flag.

External coupling Modules are tied to specific external environments. For some modules this may be
unavoidable, but environment dependence should be isolated as much as possible.

Common coupling Modules share data in a global data area.

Content coupling One modules uses the data within the boundary of another module.

In this scheme, coupling should be as low as possible, both for components and for modules making up
components. For some modules it may not be possible to achieve the lower levels of coupling (no coupling,
data coupling). An effort should be made, however, to build modules with coupling as low as possible in
the above scale.

Another way to measure coupling comes from [F ,MBILE87]. In this scheme two compilation units are
visibly coupled if one directly accesses the data structures of the other. '[hey are surreptitiously coupled if one
uses undocumented information about the other's data structures. Finally, they are loosely coupled if they
are neither visibly nor surreptitiously coupled. In the scheme, the goal is to make components loosely
coupled.

DES-4 Document Each Interface Thoroughly: Well-documented interfaces are important for building
reusable components. This will allow programmers to easily understand new code and thus lower the cost
of reuse. To thoroughly document interfaces, do the following.

* For generics, explain each formal.parameter.

* For subprogram, function and task interfaces, explain each parameter.

* If the interface is unusually complex, describe it thoroughly in a document.

Portability ard Design

DES-5 Make All Dependent Components Reusable: A component is not fully reusable unless all the
components it withs are reusable. If a component depends on components that are not reusable, then there
is a potential for portability and tailorability problems. Thus, when submitting a reusable component to the
filtered repository, make sure that all the components it depends on arc reusable as well. That is, make sure
that each component that is depended on complies with the guidelines in this document.

Comments

General Guidelines

COM-I Make Each Comment Adequate, Concise and Precise: h'lis will obviously make the component
more readable and thus easier to tailor.

Specific Kinds of Comments: These guidelines recommend the following kinds of comments:

" Exception Documentation Blocks and
" Subprogram Specification Comment Blocks.

Exception documentation blocks are described in - hdref refid = hexbloc >. Subprogram Specification
Comment Blocks are described below.

2. Coding Guidelines 6

COM-2 Document Each Subprogram with a Subprogram Specification Comment Block: A subprogram
specification should clearly state the intended function of the subprogram. To do this, use a Subprogram
Specification Comment Block before each subprogram specification. Give the name of the subprogram and
a description of its function. List specific design details, such as conditions that raise exceptions. Be sure to
include the conditions that will cause predefined exceptions to be raised and multiple conditions that can
cause the same exception.

The comment block could appear with a line of asterisks above or below it. Blank lines might also be
placed above the comment block to act as separators. The comment block or part of it could also appear in
the body as subprogram commentary. The following example shows a Subprogram Specification Comment
Block.

-- < STRINGTO DYN STRING

-- < Function:
-- < Return a dynamic string given an Ada string
-- < Detail:
-- < if length (ADA STRING) > MAXDYNAMIC STRING LENGTH then

raise STRING TOO LONG
-- < if ADA STRING - NUL then

return NULL dynamic string
-- < if ADA STRING /= NULL then

return a dynamic string representation of ADA STRING

Declarations and Types

All the guidelines in this section are designed to improve portability or tailorability.

General Guidelines

DEC-1 Avoid Anonymous Types: An anonymous type is a type without a simple name. Consider the
following example.

Schedule: array (1..5) of Day;

Ilere the type array (/..5) of Day has no simple name and is thus an anonymous types. There are only a
few cases in Ada where one can create anonymous types; array declarations are one; task declarations are
another. One should avoid anonymous types for several reasons:

" There is no self-explanatory type name.

" Using such anonymous types makes qualified expressions impossible. There is no type or subtype to
which the programmer can refer in order to qualify the expression.

* Anonymous type impede tailoring because the programmer cannot add assignment statements like the
one below without creating a common type beforehand.

A,B : array (POSITIVE range MIN .. MAX) of COMPONENT;
begin

-- Some code
A := B; -- Produces a compile-time error

end;

DEC-2 Try to Use Limited Private Types: Limited private types help hide design details from the user. Use
limited private types when you want neither equality nor assignment exported. If you want these operators
to be exported, then use private types instead.

2. Coding Guidelines 7

There is one thing that should be kept in mind when using private or limited private types. When limited
private or private types are exported, the privacy requirement "propagates." That is, any type that uses a
limited private type in its declaration must itself be limited private. Also, any type that uses a private type in
its declaration must itself be either private or limited private.

For example, consider the following situation.

* Package A uses a limited private type for the DYN STRING.

type DYN STRING is limited private;

" Package B uses package A and has a data structure that has DYNSTRING as a subcomponent as
follows.

type NUMBER RECORD is
record
FIELD1 : A.DYNSTRING;
FIELD2 : STACK;
FIELD3 : INTEGER;

end record;

* Package C uses package B and refers to the record of package B.

type TOTAL is
record

ENTRY : NUMBERRECORD;
TALLYLIST INTEGER;

end record;

Since package A declares DYN STRING as a limited private type, then package B must define the
NUMBER RECORD as a limited private type. Package C must use TOTAL as a limited private type
because it refers to the NUMBER-RECORD of package B.

This propagation of limited/non-limited private type requirements could cause major rework for packages
being modified to use components that use private types. Thus, we believe that a reuse repository should
store information on each Ada component on whether the component is based on limited private, private, or
non-private types. This would help users select suitable components.

DEC-3 Use Range Constraints on Numeric Types: For example, instead of

type tl is digits 5;

code the following:

type tl is digits 5 range 0.0 .. 100.0;

This causes the compiler to issue a message if the range cannot be supported. The range constraints should
be meaningful to the application. [BARNE84]

DEC-4 Avoid Predefined and Implementation Defined Types: Avoid declaring objects of predefined types
such as INTEGER, and implementation types such as IONGINTEGER (from appendix F of each ADA
implementation). Predefined and implementation defined types are not likely to be portable because their
form can vary from Ada implementation to Ada implementation.

DEC-5 Explicitly Specify the Precision Required: Each floating point or fixed point type should explicitly
specify the precision, using the delta or digits accuracy definition. This will make clear any assumptions
made about accuracy of calculations.

DEC-7 Use Attributes Instead of Explicit Constraints: Consider the following example from [NISSE84].

2. Coding Guidelines 8

* I

A: array (DISCRETETYPE) of F;

for I in DISCRETE TYPE loop
exit when A(I) < SUM * F'EPSILON;
SUM := SUM + A(I);

end loop;

This example assumes that the series A(l) + A(2) + A(3) + ... converges when all terms are positive.
Because the loop depends on F's model numbers and not on explicit constraints, all Ada implementations
should have the same accuracy.

DEC-8 Declare invariants as constants

In general, objects should be declared as constants if they are invariant. Declare pi as:

p: constant float :=3.1416;

Do not declare pi as:

p: float :=3.1416;

Eliminated, is the possibility of unintentional change of the invariant value.

For example, declare:

stack-index: stack indextype := 0; instead of

Do not declare:

stack-index: stack indextype;

Initialization precludes the use of uninitialized variables. Exceptions to the rule are limited private type
variables which cannot be initialized, and situations in which performance reasons preclude initialization. In
the performance category, use comments to explain where the variable is set.

Guidelines for Arrays

ARR-1 Explicitly Declare a Type to Use in Defining Discrete Ranges: Use explicitly declared types for
discrete ranges. That is, use

type DISCRETE RANGE is range ..TABLESIZE;
type TABLE is array (DISCRETERANGE) of ELEMENTTYPE;

instead of

type TABLE is array (1..TABLESIZE) of ELEHIENTTYPE;

PAPPA85, p. 28

This provides several benefits. There will be fewer logic errors when components are tailored, because the
compiler will have already caught them when it checked for type inconsistencies. Also, the code will be
more portable, since the compiler can select the best internal representation for the numeric type requested
by the range declaration.

Unfortunately, using explicitly declared types for integer discrete ranges does not always lead to easy to read
code. Type conversions may be needed to convert among explicitly declared types. The combination of
long type names and required type conversions results in long multi-line Ada statements that are hard to
read. Nevertheless, we believe the advantages of using explicitly declared types for integer discrete ranges
outweigh the disadvantages.

2. Coding Guidelines 9

ARR-2 Do not hard code array index designations: Do not hard code array index designations, as below.

type TABLE is array (1..50) of ELEMENT_TYPE;

Use types or subtypes instead, because the additional declaration will make the code more self-documenting
and thus more tailorable. The upper or lower bound may be an index that will change at some time. The
subtype or type declaration will allow the change to be made once instead of many times throughout the
program.

Names

NAM-1 Use Descriptive Identifier Names: Use descriptive identifier names to promote readability and
self-documentation. Descriptive identifier names make the code clearer. Names should be as long as
necessary to provide the needed information and to promote readability. They should be considered part of
the documentation of the component.

NAM-2 Keep Identifier Names Less Than 80 Characters Long: Keep identifiers less than 80 characters
long, because some Ada implementations use 80 characters as the maximum identifier length. Furthermore,
some display devices are limited to 80 characters, since they lack the ability to format larger strings.

NAM-3 Do Not Overload Names from Package STANDARD: Ada names predefined in package
STANDARD should not be redefined or 'overloaded'. [RYMER86], p. 5 This keeps the reader from
confusing the overloaded names with the names predefined in package STANDARD. There is an exception
to this rule -- it is permissible to overload the names of operators.

Naming Conventions: Besides the above guidelines, there is no specific naming convention for identifiers in
these guidelines. It is assumed that a component retrieval system will exist which will provide tools to
analyze component information. The tools will have powerful analytical capabilities, so that a naming
convention will not improve the analysis. It will only place unnecessary constraints on the programmer.
Ilowever, if the component retrieval tools are not as powerful as anticipated, a naming convention may
prove useful, and one should be corsidered.

Statements

Loop Statement

STA-1 Use Explicitly Declared Types for Integer Ranges in the loop Statement: This will improve
portability. If no type name is specified, INTEGER is used as the default, which can result in a discrete
range being invalid under some Ada implementations. By using type designations, the logic can be more
independent of the data.

The following example shows a loop range that should not be used.

for I in 1..MAX NUM APPLES ...

end loop;

Instead, do the following.

type APPLE COUNT TYPE is range 1..MAX NUM APPLES;
for I in APPLECOUNTTYPE loop ...

end loop;

2. Coding Guidelines 10

STA-2 Exit Basic LOOPs only via Conditional
Exit and Return Statements.

Implicitly, this eliminates unconditional returns, planned Exceptions, and Goto statements as methods for
exiting basic Loops.

For example, use:

clear stack:
loop

begin
pop;
exception
when stackempty condition =>
exit clearstack;
end;

end loop clear stack;

Do not use:

clear stack;
loop
exit clear-stack when stackisempty;
pop;
end loop clear_stack;

Exceptions used to alter the flow of control in non-error conditions, inhibit maintainability and thus
portability. Gotos should be reserved for atypical situations because they inhibit maintainability. An
Unconditional exit from a basic Loop implies the basic Loop structure is meaningless.

If Statement

STA-3 Use Elsif for Nested If Statements: This reduces the nesting levels of the if statements, giving the
code a clean, uncluttered appearance. It also emphasizes the equal status of each if statement.

The following is an example from BARNE84, p. 50 of nested if statements.

if ORDER = LEFT then
TURN LEFT;

else
if ORDER = RIGHT then

TURNRIGHT;
else
if ORDER = BACK then

TURNBACK;"
end if;

end if;
end if;

The example below shows the above example with <hp2> elsif</hp2> s.

if ORDER = LEFT then
TURN LEFT;

elsif ORDER = RIGHT then
TURN RIGHT;

elsif ORDER = BACK then
TURNBACK;

end if;

2. Coding Guidelines 1

Case Statement

STA-4 Avoid Using the When Others Clause as a Shorthand Notation: The when others clause of the case
statement should not be used as a shorthand to handle all cases that have not been listed. Instead, explicitly
handle each case and omit the when others clause. If the component is later modified to add more values to
the data type, this will call attention to the fact that the new values are not handled in the case statement. If
the when others clause was used, the new data values would be handled by this clause and the operation on
the data might be incorrect.

If there is a long list of conditions to be enumerated, use ranges and vertical bars to simplify listing all
possible values as in the following example:

begin
case X is

when AA =>
-- Some stuff

when DD =>
-- Other stuff

when BB..CC I EE..ZZ =>
-- The Other other stuff

end case;
end;

Subunits

General Guidelines

SUB-i Use Named Constants for Parameter Defaults: Use named constants as parameter defaults
whenever they would help the reader to better understand the code. For example, this

procedure READ (VALUE out ELEMENTTYPE;
GROUP in TAG GROUPTYPE DEFAULTGROUP);

is easier to understand than this.

procedure READ (VALUE out ELEMENTTYPE;
GROUP in TAG GROUPTYPE 0);

SUB-2 Named Parameters: We do not believe that a set of guidelines should require named parameter
association. This should be a user-selectable option with an intelligent formatter. Until such formatters are
available, the following are some recommendations on the subject.

1. If there is more than one parameter in the called subprogram, then use named parameter association.
This will make the interface clear to the user and make the code self-documenting, particularly when the
component user is not supplying all of the possible parameters.

2. If the called subprogram only has one parameter, then use of named parameters is up to the coder. The
determining factor should be whther use of the named parameter association will improve readability.
Using parameter names in the interface of single parameter function calls particularly hinders readability.

SUB-3 Make Components Complete: Reusable components should be as complete as practical, meaning
that the component ideally has all operations to manipulate the given object. For example, a stack package
should have such operations as PUSII, 1PO1, CIJARSTACK and iS_iMPTI'Y. This insures that any
stack operation needed in the future will already exist and not need to be coded.

Admittedly, this guideline cannot be fully realized in practice. Yet the goal of completeness is still useful as
something to strive for.

2. Coding Guidelines 12

The guideline is easier to follow if standard interfaces have been established. For example, there is a
standard interface for stack packages, then it will be trivial to inspect a particular stack package to tell
whether it provides all the required operations.

SUB-4 Write Each Module So It Has High Cohesion: Cohesion is a measure of the degree to which the
statements in a component form a whole. The most coherent components do just one thing, whether it be
manipulating an object or performing a function. Cohesion should be maximized whenever possible.

One way to achieve high cohesion is to use an object-oriented design. Such a strategy makes it easy to
detect low cohesion. STDEN86

SUB-5 Use Information Hiding: There are three guidelines here.

" Only place in the specification section those declarations that must be seen externally.

" Only with those compilation units that are really needed. Only if the specification needs such visibility
should the context clause appear in the specification; otherwise it should appear in the body. A tool
could be written to catch unneeded withs.

" Use private and limited private types to promote information hiding.

The rationale comes from the good software engineering practice of minimizing the amount of information
visible to the outside world.

Guidelines on Subprograms

SUB-6 Use Descriptive Named Constants as Return Values: Named constants should be returned
whenever they would help the reader to understand the code. For example, it is more informative to return
the named constant NOTFOUND than to return the value -1.

Exception Handling

As stated earlier in this document, good exception handling is important to software reuse for several
reasons.

" Components with good error / exception handling have safety built in.

• Errors are isolated and well-documented.

* The way interfaces work is made clear. There are fewer hidden assumptions.

" The users have the freedom to decide whether to propagate exceptions further, to retry the operation
that raised the exception, to abandon the operation, or to continue regardless.

" Good exception handling makes components more tailorable and thus more reusable.

Exception Handling Design

EXP-1 Avoid the When Others Construct with the Null Statement: Use of the null statement suggests that
the exception is not used for an abnormal condition.

2. Coding Guidelines 13

begin

l oop

raise MISCELLANEOUS ERROR;

end;
exception
when others =>
null;

end;
-- rest of normal program code

In the above example a raise statement is used to exit the loop and to continue executing normal control
flow. This implies that there never was an abnormal condition.

EXP-2 Avoid pragma SUPPRESS: The Ada Language Reference Manual ADA83 does not require that
pragma SUPPRESS be implemented. Pragma SUPPRFSS does not guarantee that exceptions will not be
propagated to a unit for which exception suppression is in effect. The execution of a program is erroneous if
an exception occurs while pragma SUPPRESS is in effect.

EXP-3 Handle Exceptions Close to Where They Are First Raised: This gives the exception handler access
to local data, which can be used to respond to the exception. It also avoids losing visibility to the exception
name.

When an exception is propagated to a scope outside its visibility, its name is lost. The exception can only be
handled by a when others handler. Such exceptions might be unwittingly handled by a handler that was
never intended to handle the exception.

Below is an example of an exception handler making use of local data.

package body SEQUENTIALACCESSMETHOD is

CURRENT-RECORD : RECORD-IDENTIFIER := STARTOFFILE;

procedure GET (FILE : in FILE TYPE;
REC : out RECORDTYPE) is

VALUE : RECORD-TYPE;
begin

VSAM.I.VGET(CATALOG => FILE,
INDEX => CURRENT RECORD + 1,
DATA => VALUE);

exception
when DEVICE ERROR =>

ERRORIO.LOG("Error Occurred Reading Record" amp
RECORD IDENTIFIER'IMAGE(CURRENT_RECORD + 1));

end GET;
end SEQUENTIALACCESSMETHOD;

EXP-4 Imbed Potential Elaboration Exceptions in a crame: I nless special provisions are made,
elaboration exceptions are not handled in the unit being elaborated. Consider the following example.

package ELABORATION EXCEPTION PKG is
S : STRING (1..2) "Causes Constraint Error";

end ELABORATIONEXCEPTIONPKG;

The Constraint Error exception that is generated is not handled inside the package; it is propagated out.

The solution is to imbed potential elaboration exceptions in a frame. To do this, do the following.

2. Coding Guidelines 14

" Move declarations to declare blocks inside executable regions,

" Do initializations inside executable regions, and

* Encapsulate initializations within a subprogram to take advantage of Ada's strong typing, as in the
following example.

with INITIALIZATIONPKG;
package ELABORATION EXCEPTION PKG is
S : INITIALIZATION PKG.NAME_TYPE := INITIALIZATIONPKG.SETNAME;

end ELABORATIONEXCEPTIONPKG;

package INITIALIZATION PKG is
subtype NAME-TYPE is STRING(I..2);
function SETNAME return NAMETYPE;
-- guarantees no CONSTRAINT ERROR

end INITIALIZATION PKG;

Exception Propagation

EXP-5 Do Not Propagate an Exception Where Its Name Is Not Visible: Do not propagate an exception
beyond where its name is visible. Otherwise, it can only be handled by a when others handler.

EXP-6 Do Not Propagate Predefined Exceptions Without Renaming Them: Predefined exceptions have no
corresponding raise statement in the source code, so it is not always obvious that an exception can be
propagated. Predefined exceptions can be raised by many operations, making them difficult to locate.
Renaming predefined expressions makes it easier to pinpoint the exact cause of each exception. For
example, the predefined exception STORAGEERROR might be propagated as MEMORYJFULL.

Use of Exception Handling

EXP-7 Do Not Execute Normal Control Statements from an Exception Handler: Only use exception
handling for abnormal control flow, not for normal control.

Below is an example of poor use of exception handling.
begin

loop
TEXT_10. GET (DATAFILE,DATAVALUE);

end loop;
exception

when TEXT IO.ENDERROR(DATAFILE) =>
-- execute the rest of the program here

end;

In contrast, the following shows equivalent code without the use of an exception handler.

while not TEXT IO.END OF FILE(DATA FILE) loop
TEXTIO.GET(DATA FILE,DATAVALUE);

end loop;
-- execute the rest of the program here

Exception Documentation

2. Coding Guidelines 15

EXP-8 Document All Exceptions Which Will Be Propagated from an Operation in an Exception
Documentation Block: An Exception Documentation Block shows which operations raise which exceptions
under what conditions. In this block, describe all the conditions that cause each exception to be raised,
including predefined exceptions. This will help other developers in making their designs complete.

Be sure to clearly associate each exception with every operation where the exception can be raised. If the
same operation can raise an exception for different reasons, record each reason separately.

The following is an example of an Exception Documentation Block.

STRINGTOOLONG : exception;

-- Raised By On Condition

-- INSERT the size of the string with the
-- insertion exceeds MAX DYNAMIC

STRING LENGTH

-- REPLACE the size of the string with the
-- replaced part exceeds MAXDYNAMIC_
-- STRING LENGTH

EXP-9 List all Conditions That Raise Exceptions in Subprogram Specification Comment Blocks: This
includes the conditions that will cause predefined exceptions to be raised and includes multiple conditions
that can cause the same exception.

Exception Handling Parameter Usage

EXP-10 Ensure That Out Parameters Cannot Be Undefined Upon Return from a Subprogram If an
Exception Occurs: Never depend on the value of out parameters or return values when designing a handler
response. When an exception occurs while evaluating the right side of an expression, then the current value
of the variable stays the same. The values of scalar out parameters which are not updated are undefined.
Thus, the exception handler should set the values of scalar parameters before returning.

Implementation Dependencies

Design Considerations

IMP-I Isolate Compiler, Operating System and Machine Dependencies: To make components portable,
avoid optional language features and Ada implementation dependencies. Where this cannot be done, isolate
such uses, so users can plug in new versions easily. l)ocument all such uses. Both encapsulation and
documentation will reduce the effort to port a component to a nev implementation.

Write code to ignore details of underlying implementations. Components should be designed without
reference to the surrounding environment. Contact between a component and its environment should occur
through explicit parameters and explicitly invoked subprograms. PAPPA85, p. 7

IMP-2 Avoid Optional Language Features: For example, avoid using 1 NCIIECKI DDEALLOCATION
and UNCHECKED CONVERSION. These two procedures are optional and implementation dependent.
If you use these procedures, document their use. EnvironiImthposedRestrictions:/hpl. and
Compiler Dependent Restrictions.

Pragmas

2. Coding Guidelines 16

IMP-3 Avoid Using Pragmas: Pragmas are instructions to a specific compiler. Pragmas generally imply
environmental depenendencies and, therefore, are a negative portability indicator. For example, Pragma
INTERFACE implies the existence and dependence of a component on non-ADA code. Pragma
ELABORATE is needed to force elaboration order for correct compilation. Elaboration order is compiler
dependent and may not be preserved with another compiler.

Pragma INTERFACE may be needed to specify interfaces with subprograms of other languages. Pragma
ELA BORATE may be needed to insure that a program is correctly elaborated no matter what compiler is
used, since elaboration order varies from compiler to compiler. However, take care that pragma ELABORATE
is essential and not needed because the component is overly complex.

IMP-4 If Pragmas Are Used, Isolate and Thoroughly Document Them: If they must be used, they should be
isolated as much as possible.

Those components which use pragmas should be documented, pointing then out and describing their effects.
Pragmas.

For example, use of pragma INLINE in a reusable component should be documented. Its use can force the
user's code to depend on the body of the reusable component. Since this effect is usually unexpected, take care
to insure that the reuser is aware of the compilation issues caused by it.

Input and Output

General Guidelines

10-1 Encapsulate I/0 Uses Into a Separate I/0 Package: All input/output utilities should be isolated into
I/0 packages. This will make it easy for users to adapt the component to different machines and operating
systems.

Guidelines on Specific 110 Procedures and Functions

10-2 Do Not Rely on NEWPAGE: The Ada language standard does not specify the value of a page
terminator. Thus, the control characters may be non-portable across printers. One solution is to always direct
output to a file, which can then be filtered and altered to suit the device the output is ultimately destined for.

10-3 Document Implementation Dependent Procedures: Use of the following procedures could result in
portability problems. Dependencies on such procedures should be documented. PortabilityRestrictions.

" COL -- Depends on the implementation-defined subtype POSITI' COU(NT.

* DIRECT IO.READ -- Reads from an index whose range POSITIVECOUNT is implementation defined.
The DIRECT 10. WRITE procedure could also cause similar problems.

" ENUMERA 7'ION IO.GET -- Returns an out parameter of the predefined types POSITI VE or
NATURAL to specify the LAST character input. It also has a 11lI)Ti parameter of the
implementation-defined type FIELD.

" FIXED IO.GET -- Returns an out parameter of the predefined types POSITIVE or NATURAL to specify
the LAST character input. It also has a WII)TII parameter of the implementation-defined type FIELD.

" FIXED IO.PUT -- las a WID771 parameter of the implementation-defined type FIELD.

SFLOATIO.GE7'-- Returns an out parameter of the predefined types POSITI VE or NA7URAL to
specify the LAST character input. It also has a JVIDTII parameter of the implementation-defined type
FIELD.

* FLOAT IO.PUT -- Has a WIDTII parameter of the implementation-defined type FIELD.

2. Coding Guidelines 17

* GET LINE -- Returns an out parameter of the predefined types POSITIVE or NATURAL to specify the
LAST character input.

• INDEX -- Uses an index whose range POSITV,_COUN7"is implementation-defined.

" INTEGERIO.GET -- Returns an out parameter of the predefined types POSITIVE or NATURAL to
specify the LAST character input. It also has a WIDTII parameter of the implementation-defined type
FIELD.

• INTEGERIO.PUT -- las a WIDTI parameter of the implementation-defined type FIELD.

" LINE -- Depends on the implementation-defined subtype POSITIVE, COUNT.

• LINELENGT1 -- Depends on the implementation-defined type COUNT, whose upper bound varies with
each implementation.

• PAGE -- Depends on the implementation-defined subtype POSITIVE COUNT.

• PAGELENGTHt -- Depends on the implementation-defined type COUN'!, whose upper bound varies with
each implementation.

• SETCOL -- Depends on the implementation-defined subtype POSITIVE_COUNT.

• SETLINE -- Depends on the implementation-defined subtype POSI7I VECOUNT.

• SET INDEX -- Uses an index whose range POSIT! 'ECOUNT is inplementation-defined.

• SETLINELENG77T -- Depends on the implementation-defined iype COUN, whose upper bound varies
with each implementation.

" SETPAGELENG77T -- Depends on the implementation-defined type COUNT, whose upper bound
varies with each implementation.

* SIZE -- Uses an index whose range POSITIVECOUNT is implementation-defined.

[MATTH87b, p. 2]

Furthermore, using procedures SKIPLINE and NEJ4_,INE to skip more than one line at a time may lead to
portability problems, since they depend on the implenentation-defined subtype POSITIVECOUNT. Skipping
one line will not cause any problems; however, skipping multiple lines may not be portable depending on the
constraint set by the Ada implementation. [MATTI"87b, p. 2]

File Handling

10-4 Close Files Before a Program Completes: Different Ada implementations handle unclosed files in
different ways. The state of unclosed files after program termination is undefined. To increase the reusability
of a component, close all files before a subprogram terminates normally or abnormally. Be sure to verify that a

file is open before closing it so that the exception STA TUSERROR is not raised.

1/0 of Access Types

10-5 Do Not Input or Output Access Types: The effect of I/O of access types is undefined. If used, it may
lead to components that are not portable. 7"o output an object pointed to, output the object. To output the
address of an object pointed to, output the address of the object using S YSTEM.ADDRESS. [MA TTIt87b, p.
I] Document the use of SYSTEM.ADDRESS.

2. Coding Guidelines 18

3. References

There are numerous coding guidelines available, particularly for Ada. The following is a list of references for
the STARS reusability coding guidelines.

[ADA83] Reference Manual for the Ada Programming Language, ANSI/MIL-STD-1815A-1983,
February, 17 1983.

[AH074] Aho, A. V., .1. E. Hoperoft and .. D. Ullman, The Design and Analysis of Computer
Algorithms, Readding, Mass.: Addison-Wesley, 1974.

[AUSN185" Ausnit, Christine, Christine Braun, Sterling Eanes, John Goodenough, Richard
Simpson, Ada Reusability Guidelines, SoflTech, Inc., April 198.5.

[BARNE84] Barnes, J.G.P., Programming in Ada, 2nd edition. Addison-Wesley Publishers
Limited, 1984.

[BENTLS5] Bentley, Jon, "Programming Pearls," Communications of the ACM, vol. 28, no. 7 July
1985.

[BOOCII87] Booch, Grady, Software Components With Ada. The flenjamin/Cnummings Publishing
Company, Inc., 1987.

[EMBLE87] Embley, David W. and Woodfield, Scott N., "Cohesion and Coupling for Abstract
Data Types." Proceedings, Sixth Phoenix Conference on Computers and
Communications, Phoenix, Arizona, February 1987.

[EVBSE87] EIB Software Engineering, Inc., Creating Reusable Ada Software, 1987.

[IBMO340] IBM Systems Integration Division, Informal Technical Report on Findings During the
Rebuild of Common Capabilities, CDRI Sequence No. 0340, February 19, 1989.

[IBM0360] IBM Systems Integration Division, Reusability Guidelines, CDRL Sequence No. 0360,
December 17, 1988.

[IBM0370] IBM Systems lztegration I)irision, Reusable Component Data Analysis, CDRL
Sequence No. 0370, February /0, 1989.

[IBM0380] IBM Systems Integration Division, Consolidated Reusability Guidelines, CDRL
Sequence No. 0380, March 21, 1989.

[IBM0460] IBM Systems Integration Division, Repository Guidelines and Standards, CDRL
Sequence No. 0460, March 17, 1989.

[IBM0520] IBM Systems Integration Division, Long Term Configuration Management Plan for the
STARS Repository, CDRL Sequence No. 0520, March 17, 1989.

3. References 19

[IBMO71O] IBM Systems Integration D~ivision, DTL) Definition: Internal D)ocumentation, CDRL
Sequence No. 0710,.January 16, 1989.

[MATSU84] Matsumoto, Y., " Experiences in Promoting Reusable Software Presentation in Higher
Abstract Levels," IEEE Transactions on Software Engineering, vol. SE-10 (5),
September 1984.

[MAlTH187a] Matthews, E. R., IBM Federal Systems Division Guide for Reusable Ada Components
(Draft), September 17, 1987.

[MATrH87b] Matthews, E. R., "Observations on the Portability of Ada I/O," ACM SIGA da Letters,
vol. VII, no. 5, September/October /987.

[MCILR68] Aiclroy, M. D., "Mass Produced Software Components," Report on a conference by
the NATO Science C'ommittee, Garmisch, Germany, October 7-11, 1968.

[MENDA88] Mendal, Geoffrey 0., "Three Reasons to Avoid the (Ise Clause," ACM SIGAda
Letters, vol. V'III, no. 1,J.anuaty/T'lebruary 1988.

[NISSE94] Nissen, John and Peter W}allis, Portability and Style in A da, Cambridge UJniversity
Press, 1984.

[PAPPA85] Pappas, Frank, Ada Portability Guidelines, Sofl'ech, Inc., Mlarch /985.

]RACIN88] Racine, Roger, "Why the Use Clause is fleneficial," ACM SIGAda Letters, vol. VIII,

no. 3, May/Jlune 1988).

]ROSEN87] Rosen, .1. P., "in defense of the 'use' clause," ACMI SIGAda Letters, vol. 1/II, no. 7,
November/December 1987.

]RYMIER86J Rymer, John and AMcKeever, Torn., The FSI) Ada Style Guide, 1986.

[SomM89 Sommrervillc, I., Software Engqineering, 3rd. edition, Addison-lJVesley, 1989.

]ST)EN861 St. Dennis, R., P. Stachour, E. IFrankowski, and E. Onueghe, "Measurable
Characteristics of Reusable Ada Soft ware," ACMI SIGAda Ada Letters, vol. V/I, no. 2,
March/April 1986.

]STEVF.74] Stevens, JV. P., G. J1. M~yers, and I.. IL. Constantine, "Structured design. " 111M
Systems .Iournal, /974, no. 2.

]U -0SY S3 40 Unisys Corporation, Draft Technical Report on Reusability Guidelines, CDRL 0340,
February 14, /989.

3. Refrrnccs 20

4. Glossary

The following terms and definitions describe component attributes and design issues, as used in these
guidelines.

anonymous type A type without a simple name.

cohesion A measure of the degree to which the code in a module forms a coherent whole.

contact The contact is the person in the producing company who is the 'point of contact' for that particular
part or product. Point of contact refers to the person who is familiar with the product, and can either answer
questions about it, or can refer people to someone who can answer them.

coupling A measure of how much components or modules depend on each other. Coupling depends on the
interfaces between modules, the data that pass between them, and the control relationships.

dynamic stack The stack of calls made at runtime.

exception documentation block A comment that documents an exception.

frame An Ada language construct that surrounds an exception handler. A frame can be a block statement or
the body of a subprogram, a package, a task, or a generic.

functional completeness The idea that components should have all finctions and operations required for
current and future needs.

independence The ability of a component to be used with different compilers, operating systems, machines and
applications than those for which it was originally developed. Independence is closely related to portability.

maintainability The ease of modifying a
component, whether it be to meet particular needr or to fix bugs.

order (of an algorithm) A measure of
the computational efficiency of an algorithm, expressed in terms of the frequency of some key operation. For

more informuation, see A 11074.

overloading The property whereby Ada literals, operators, identifiers, and aggregates can have wambiguous
alternative meanings.

platform Platform refers to the architecture fir the system for which the product is intended (hardware,
operating system, and Ada compiler) Some products may be intended for several different platforms.
Platforms listed should also indicate whether thej, are host platforms, target platforms, or both.

portability The ability of an application or component to be used again in a different target environment than
the one it was originally built for. The phrase target environment mnay be defined broadly to inchde operating
systems, machines, and applications. To be ported effectively, components may need to be tailored to the
requirements of the new target environment. See also reusability and independence.

reliability The extent to which a component performs as specified. A reusable component performs
consistently with repeated use and across environments (that is, operating systems and hardware).

4. Glossary 21

reusability The ability to reuse a software component or to use it repeatedly in applications other than the one
for which it was originally built. In order to be effectively reused, the component may have to be tailored to
the requirements of the new application. See also portability.

subprogram specification comment block A comment block that accompanies a subprogram specification,
giving its name and a description of its function.

tailorability The ease of modifying a component to meet particular needs. It should be distinguished from
maintainability, which includes tailorability, but also includes the idea of corrective maintenance (fixing bugs).

4. Glossary 22

Index

index 23

